Reagent for Cellular Function Analysis

Reagent for Cellular Function Analysis

Cell Proliferation/Cytotoxicity Assay

Cell Counting Kit-8
Cytotoxicity LDH Assay Kit-WST
Viability/Cytotoxicity Multiplex Assay
Cell Count Normalization Kit

Cellular Senescence

Cellular Senescence Detection Kit - SPiDER-βGal Cellular Senescence Plate Assay Kit - SPiDER-βGal

Autophagy

Autophagosome Detection (DAPGreen / DAPRed) Autolysosome Detection (DALGreen)

Oxidative Stress

ROS

ROS Assay Kit -Highly Sensitive DCFH-DA-ROS Assay Kit -Photo-oxidation Resistant DCFH-DAmtSOX Deep Red - Mitochondrial Superoxide Si-DMA for Mitochondrial Singlet Oxygen Imaging

Lipid Peroxide

Liperfluo

Lipid Peroxidation Probe -BDP 581/591 C11-MitoPeDPP

Intracellular Iron Ion

FerroOrange Mito-FerroGreen

Glutathione

GSSG/GSH Quantification Kit

Intracellular Metabolism

Starter Kit

Glycolysis/JC-1 MitoMP Assay Kit Glycolysis/OXPHOS Assay Kit

Quantification for Intracellular Metabolism

ATP Assay Kit-Luminescence

ADP/ATP Ratio Assay Kit-Luminescence

Glucose Assay Kit-WST

Glutamine Assay Kit-WST

Glutamate Assay Kit-WST

α-Ketoglutarate Assay Kit-Fluorometric

Lactate Assay Kit-WST

NAD/NADH Assay Kit-WST

NADP/NADPH Assay Kit-WST

Uptake Assay

Glucose Uptake Assay Kit-Blue, Green, Red Amino Acid Uptake Assay Cystine Uptake Assay Kit

Fatty Acid Uptake Assay Kit

Mitochondria

Metabolism

Extracellular OCR Plate Assay Kit Glucose Assay Kit-WST

Lactate Assay Kit-WST

Mitochondrial Membrane Potential

MT-1 MitoMP Detection Kit JC-1 MitoMP Detection Kit

Mitophagy

Mitophagy Detection Kit

Mtphagy Dye

Mitochondrial Staining

MitoBright LT Green

MitoBright LT Red

MitoBright LT Deep Red

MitoBright IM Red for Immunostaining

Oxidative Stress

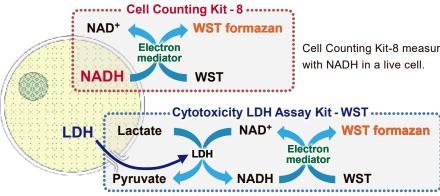
mtSOX Deep Red

- Mitochondrial Superoxide Detection

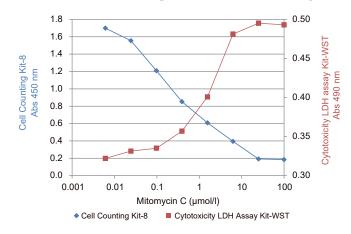
Mito-FerroGreen

Si-DMA for Mitochondrial Singlet Oxygen Imaging MitoPeDPP

Lysosome Lysosomal Acidic pH Detection Kit LysoPrime Green / Deep Red - High Specificity and pH Resistance pHLys Red - Lysosomal Acidic pH Detection Endocytosis **ECGreen-Endocytosis Detection** AcidSensor Labeling Kit - Endocytic Internalization Assay Other Organelles Cellular Membrane Staining Dye - PlasMem Bright Nucleolus Staining Dye - Nucleolus Bright Exosome **ExoSparkler Exosome Membrane Labeling Kit** ExoSparkler Exosome Protein Labeling Dye Exolsolator Exosome Isolation Kit Exolsolator Isolation Filter Lipid Droplet Lipid Droplet Staining Dye - Lipi Series Lipid Droplet Assay Kit


Cell Proliferation / Cytotoxicity Assay

Cell Counting Kit-8 Cytotoxicity LDH Assay Kit-WST


Detection Principle

Cell Counting Kit-8 measures the dehydrogenase activity with NADH in a live cell.

Cytotoxicity LDH Assay Kit-WST measures the LDH released by dead cells. when the plasma membrane is destructed.

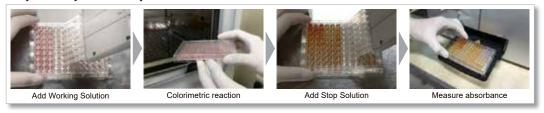
Simultaneous Usage of CCK-8 and Cytotoxicity LDH Assay Kit-WST

Drug: Mitomycin C Cell Line: HeLa

Media: MEM, 10% FBS

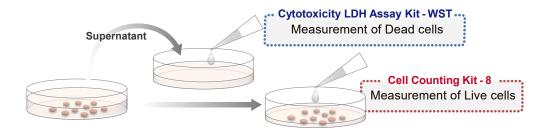

Incubation: 37°C, 5% CO₂ for 48 hours

Measuring Condition: Cell Counting Kit-8 (450 nm)


Cytotoxicity LDH Assay Kit-WST (490 nm)

Simple Procedure

· Cell Counting Kit-8



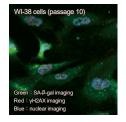
Cytotoxicity LDH Assay Kit-WST

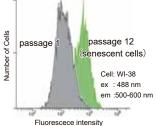
Same Samples can be used

Since same samples can be used for Cell Counting Kit-8 and Cytotoxicity LDH Assay Kit-WST, the method is convenient and time efficient.

Description	Unit	Code
	1000 tests	CK04-11
Cell Counting Kit-8	3000 tests	CK04-13
	10000 tests	CK04-20
	100 tests	CK12-01
Cytotoxicity LDH Assay Kit-WST	500 tests	CK12-05
	2000 tests	CK12-20
Viability/Cytotoxicity Multiplex Assay Kit	500 tests	CK17-10

Senescence Detection

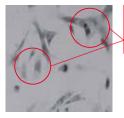

Cellular Senescence Detection Kit - SPiDER-βGal



Cellular Senescence Detection Kit – SPiDER- β Gal allows to detect SA- β -gal with high sensitivity and ease of use. SPiDER- β Gal is a new reagent to detect β -galactosidase which possesses a high cell-permeability and a high retentivity inside cells. SA- β -gal are detected specifically not only in living cells but also fixed cells by using a reagent (Bafilomycin A1) to inhibit endogenous β -galactosidase activity. Therefore, SPiDER- β Gal can be applied to quantitative analysis by flow cytometry.

SPIDER-βgal Compatible with quant

Compatible with quantitative analysis

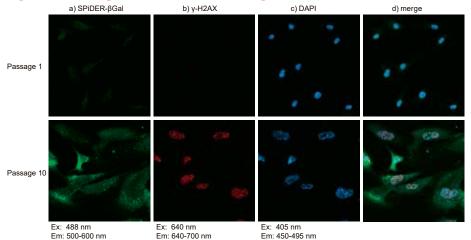


Compatible Instruments:

✓ Microscope ✓ Flow Cytometer ✓ Plate Reader

X-Gal

Difficult to quantify



count the cells
 difficult to distinguish /
 negative cells

Difficult to...

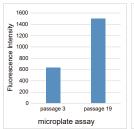
Compatible Instruments:
✓ Microscope

Co-staining of SA- β-gal and DNA Damage marker in WI-38 cells

WI-38 cells were treated with anti- γ-H2AX antibody and observed under a confocal microscope. The procedure involved several steps, including fixing the cells, permeabilizing, blocking, adding primary and secondary antibodies, staining with DAPI, and washing the cells. The experiment aimed to detect DNA damage and study DNA repair pathways.

Description

Unit


Code

Autophagy

Cellular Senescence Plate Assay Kit - SPiDER-βGal

This product is a simple detection kit by plate assay for senescence-associated β -galactosidase (SA- β -gal) activity which is used as a marker for senescent cells. By simply adding SPiDER-βGal, a reagent for detection of β-galactosidase, to 96 well plates, this kit allows you to quantify SA-β-gal activity and makes it possible to evaluate multiple samples. When normalization is done by the results obtained by counting cells, quantifying nucleic acids (a relevant product), or quantifying proteins, the measured values obtained using this kit become available for evaluating SA-β-gal activity according to cell number.

Correlation with Imaging Data

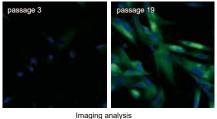
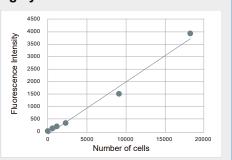


Plate Assay Ex. 535nm / Em. 580nm

Imaging data


Green: Ex. 488nm / Em. 500-600nm (SA-β-Gal staining with Cellular Senescence Detection Kit – SPiDER-βGal(Code SG04)) Blue: Ex. 405nm / Em. 450-495nm (Nuclear staining with -Cellstain- DAPI solution(Code D523))

As a result, it was confirmed that in both kits, SA-β-gal staining increased in the high-passage WI-38 cells. Bear in mind that although initial cell seeding densities are the same, cell densities at the time of plate assay differ due to low proliferation rate of senescent cells at higher passage levels. Therefore, in this experiment, we used SA-β-Gal activity values normalized by the results obtained using the Cell Count Normalization Kit in which cell number is determined by a nuclear marker.

Cell Count Normalization Kit

Cell Count Normalization Kit includes nucleic acid staining dye, Hoechst 33342 which binds to nuclear DNA to emit blue fluorescence. By measuring this blue fluorescence, correction of the measured value can easily be carried out in simple steps whereas the visual cell counting method requires complicated procedure. Moreover, unlike the correction by protein or ATP amount, the kit requires no lysis procedure. In addition, Quenching Buffer included in the kit enables a direct measuring of fluorescence signal without any background.

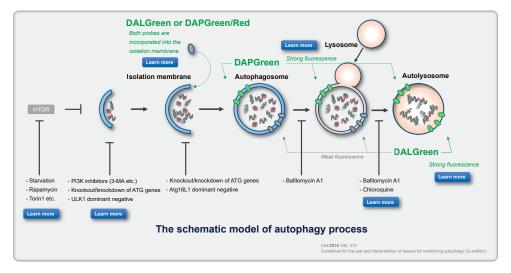
Highly correlated to cell number

Description	Unit	Code
Callular Canassana Blata Assaultit CBiDED CC-l	20 tests	SG05-01
Cellular Senescence Plate Assay Kit - SPiDER-βGal	100 tests	SG05-05
Call Count Name direction Vit	200 tests	C544-02
Cell Count Normalization Kit	1000 tests	C544-10

Autophagy

DAPGreen / Red - Autophagy Detection DALGreen - Autophagy Detection

DALGreen



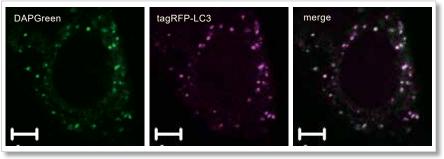
DAPGreen

DAPRed

DAPGreen and DAPRed detect autophagosomes, while DALGreen detects autolysosomes. These dyes are permeable to cells and enables live cell imaging with fluorescence microscopy, and DAPGreen and DALGreen allow for quantitative assay by flow cytometry. Autophagy is an intracellular degradation system involving autophagosome formation, detected by DAPGreen and DAPRed, and lysosome fusion, detected by DALGreen, which fluoresces intensity increases in acidic conditions.

Feature of Each Dye

	App Fluorescent Microscope	licable instrum Flow cytometer	ents Microplate reader	Fluorescent properties	Volume / the number of usable assays	Existing methods
DAPGreen	0	0	0	Ex = 425-475 nm Em = 500-560 nm * For confocal microscope,the sample can be excited at 488 nm	5 nmol x 1 / 35 mm dish: 25 (when used in 1.0 μmol/l)	LC3-GFP
DAPRed	0	×	×	Ex = 500-560 nm Em = 690-750 nm	5 nmol x 1 / 35 mm dish: 25 (when used in 1.0 μmol/l)	MDC Cyto-ID etc.
DALGreen	0	0	×	Ex = 350-450 nm Em = 500-560 nm * For confocal microscope,the sample can be excited at 488 nm	20 nmol x 1 / 35 mm dish: 10 (when used in 1.0 µmol/l)	LC3-GFP-RFP etc.


^{*}Double staining imaging by DAPGreen and DALGreen is not possible

High Correlation with LC3

DAPGreen

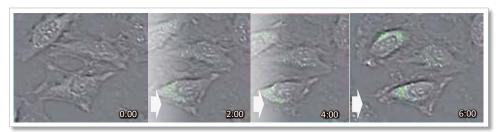
The Condition of Autophagy Detection

After adding DAPGreen to the RFP-LC3 expressed Hela cells, cells were treated with rapamycin to induce autophagy. Fluorescent imaging was conducted by confocal microscopy, 4 hours after autophagy induction.

Result

Almosto all DAPGreen signals were colocalized with LC3.

Imaging Condition


DAP Green: Ex = 488 nm, Em = 500 - 563 nm

Scale bar: 10 µm

Time-lapse imaging

DALGreen

The fluorescence intensity of DALGreen increased in autophagy-induced cells.

Detection Condition

Ex = 405 nm, Em = 500 - 550 nm

Confocal quantitative image cytometer CQ1, Yokogawa Electric Corporation

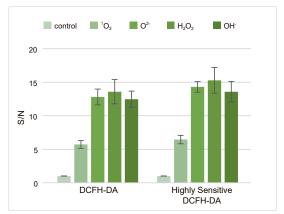
HeLa cells were stained with DALGreen, and autophagy was induced in an amino acid-free medium. Time-lapse observation was performed up to 6 hours after the induction of autophagy.

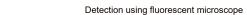
Description	Unit	Code
DALGreen - Autophagy Detection	20 nmol	D675-10
DAPGreen - Autophagy Detection	5 nmol	D676-10
DAPRed - Autophagy Detection	5 nmol	D677-10

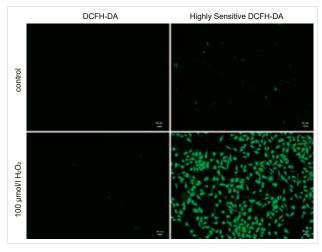
Metabolism

Endocytosis

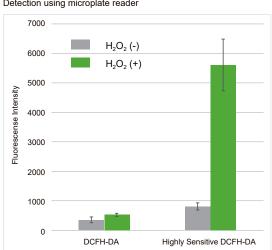
Oxidative Stress


ROS Assay Kit -Highly Sensitive DCFH-DA-


ROS Assay Kit -Highly Sensitive DCFH-DA- overcomes these limitations. The dve allows ROS detection with higher sensitivity than DCFH-DA. Moreover, the Loading Buffer included in this kit maintains cellular health during assays.


The reactivity of the Highly Sensitive DCFH-DA for ROS is similar to the reactivity of 2'-7' dichlorofluorescein diacetate (DCFH-DA). The Highly Sensitive DCFH-DA also has similar fluorescence characteristics (λ_{ex} : 505 nm, λ_{em} : 525 nm) to DCFH-DA. Therefore. ROS is detectable at the same excitation/fluorescence wavelength.

The selectivity for ROS



High Sensitive Detection Compared with DCFH-DA

Detection using microplate reader

Hydrogen peroxide (H₂O₂)-treated HeLa cells (1×10⁴ cells/ml) were stained with DCFH-DA or the ROS Assay Kit-Highly Sensitive DCFH-DA, and the fluorescence intensity of intracellular ROS was compared between two detection kits. As a result, the ROS Assay Kit-Highly Sensitive DCFH-DA in high-sensitivity detection of intracellular ROS was better than DCFH-DA.

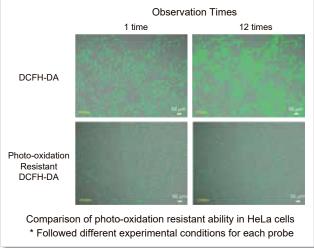
Description	Unit	Code
ROS Assay Kit -Highly Sensitive DCFH-DA-	100 tests	R252-10

ROS Assay Kit -Photo-oxidation Resistant DCFH-DA-

Proliferation Cytotoxicity

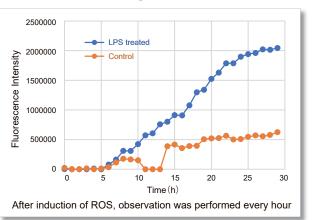
Senescence

Autophagy


Oxidative

Metabolism

The dye that is employed in this kit allows ROS detection with higher sensitivity than DCFH-DA: It does not leak from cells because the fluorescent dve can immobilize protein via a chemical bond, and it is resistant to photo-oxidation compared with DCFH-DA. Moreover, the Loading Buffer in the kit maintains cellular health during assays.

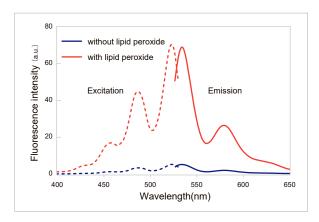


Resistant to Photo-oxidation

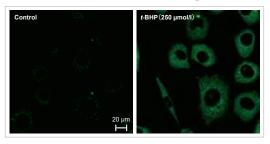
Simultaneous Detection of ROS in LPS-treated macrophages

In Lipopolysaccharide (LPS) treated RAW 264.7 cells, after being stained with regular DCFH-DA, Highly Sensitive DCFH-DA, or Photo-oxidation Resistant DCFH-DA, the intracellular ROS level was compared. The results showed that the Dojindo Laboratories' probes could detect intracellular ROS with higher sensitivity.

Description	Unit	Code
ROS Assay Kit -Photo-oxidation Resistant DCFH-DA-	100 tests	R253-10


Lipid Peroxide Detection

Liperfluo


Liperfluo is a Dojindo-developed fluorescence probe to specifically detect lipid peroxides with minimal photo-damage or auto-fluorescence. It emits intense fluorescence in organic solvents and is nearly non-fluorescent in aqueous media. Liperfluo's tetraethyleneglycol group increases its solubility and makes it suitable for imaging lipid peroxides in cell membranes. It's used to monitor lipid peroxidation in ferroptosis research through fluorescence microscopy and flow cytometry.

Excitation and emission without lipid peroxide spectra of Liperfluo with or without lipid peroxide in ethanol.

Lipid Peroxide Detection in Living Cells

Liperfluo added to cells, t-BHP induced lipid peroxidation and cells were observed under confocal microscope to study ferroptosis.

Cell line: L929

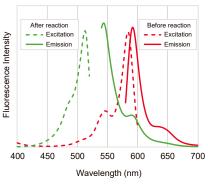
Microscope: Zeiss LSM510META

Filter type: FITC (GFP, Alexa488) wide filter

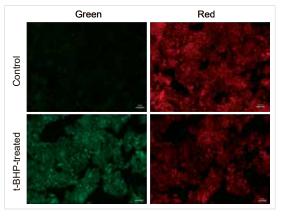
HFT UV/488 NFT490 BP505-550

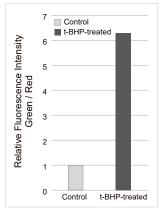
	Description	Unit	Code
Liperfluo		1 set (50 μ g $ imes$ 5)	L248-10

Proliferation Cytotoxicity Senescence


Autophagy

Oxidative Stress


Metabolism


Lipid Peroxidation Probe -BDP 581/591 C11-

Lipid Peroxidation Probe -BDP 581/591 C11- is a fluorescent probe for detecting lipid peroxidation. This fluorescent probe does not react with lipid peroxides but reacts with lipid radicals generated when lipids are peroxidized, resulting in the detection of lipid peroxidation. The unreacted probe emits red fluorescence, but after reacting with radicals around lipids, it changes its fluorescence from red to green. Thus, lipid peroxidation can be detected with high sensitivity because it is detected by the ratio of red to green fluorescence intensity.

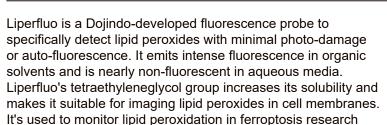
Lipid Peroxidation Assay

<Experimental Conditions> Fluorescent Microscope

Green: GFP filter (Ex = 450-490 nm, Em = 500-550 nm) Red: TexasRed filter (Ex = 540-580 nm, Em = 600-660 nm)

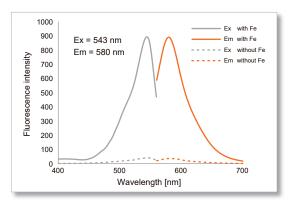
Scale bar: 50 µm

Fluorescent Plate Reader

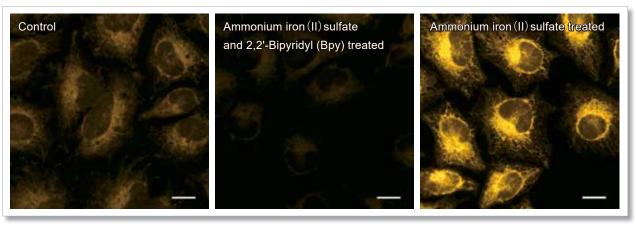

Green: Ex = 490 nm. Em = 520-540 nm Red: Ex = 570 nm. Em = 600-620 nm

HepG2 cells stained with this probe were stimulated with HBSS solution containing 200 µmol/l *t*-BHP for 2 hours, and the fluorescence intensity was compared with control cells. As a result, a decrease in red fluorescence and an increase in green fluorescence were observed with high sensitivity in *t*-BHP-treated cells compared to untreated cells. The cells were detected using a plate reader, and the values obtained were calculated as the intensity ratio of green/red fluorescence, which allowed quantified lipid peroxidation. Furthermore, an increase in the histogram of green fluorescence was observed when the cells were detected using a flow cytometer. Which improves that this dye is three different instruments.

Description	Unit	Code
Lipid Peroxidation Probe -BDP 581/591 C11-	200 tests	L267-10


Intracellular Iron Ion Measurement

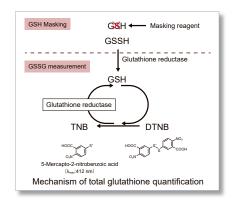
FerroOrange



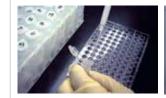
through fluorescence microscopy and flow cytometry.

Experimental Example

HeLa cells treated with chelator of iron 2,2'-bipyridyl (Bpy) (100 μ mol/l) or Ammonium iron (II) sulfate (100 μ mol/l) were prepared. The change of intracellular Fe²⁺ in HeLa cells was detected by the FerroOrange. Ex = 561 nm, Em = 570-620 nm, Scale bars 20 μ m

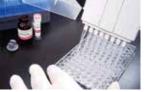

Description	Unit	Code
FormoOranga	1 tube	F374-10
FerroOrange	3 tube	F374-12

Quantification of Reduced (GSH) and Oxidized (GSSG) Glutathione


GSSG/GSH Quantification Kit

The GSSG/GSH Quantification kit contains Masking Reagent of GSH. GSH will be deactivated in the sample by simply adding the Masking Reagent. Then, using the enzymatic recycling system, only the GSSG will be detected by measuring the absorbance (λ max = 412 nm) of DTNB (5,5-dithio-bis- (2-nitrobenzoic acid). The quantity of GSH can also be determined, by substracting GSSG from the total amount of glutathione. With this kit, GSH/GSSG concentrations from 0.5 μ mol/l to 50 μ mol/l and GSSG

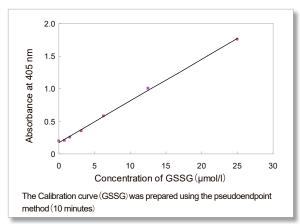
concentrations from 0.5 µmol/l to 25 µmol/l can be quantified.

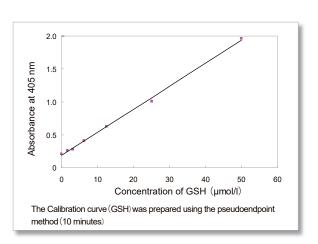

Assay Procedure

 GSSG/GSH Standard Solution and add Sample A or Sample B to each well.

2) Add Buffer solution to each well

- The state of the s
 - 3) Incubate at 37°C for 1 h.

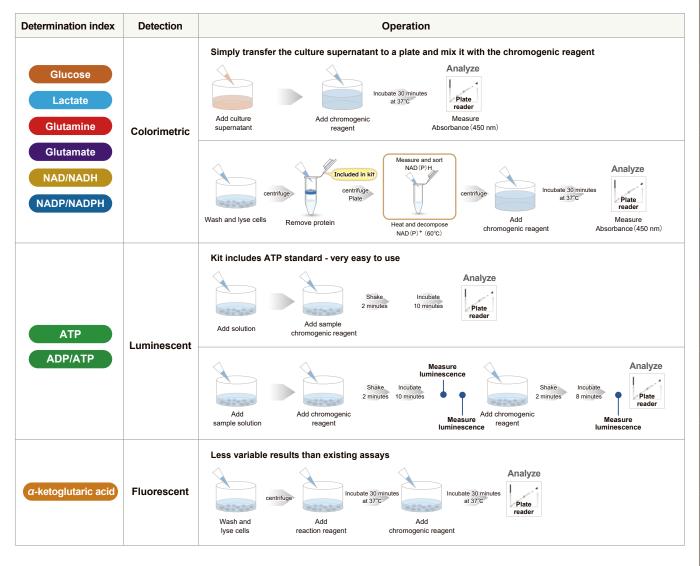



 4)-5) Add substrate working solution and Enzyme/ Coenzyme working solution to

6)-7) After incubating at 37°C for 10 minutes, measure the absorbane of each well with a microplate.

Calibration Curve

Description	Unit	Code
GSSG/GSH Quantification Kit	200 tests	G257-10


Measurements of Intracellular Metabolism

Description	Unit	Code
Starter Kit		
Glycolysis/OXPHOS Assay Kit	50 tests	G270-10
Glycolysis/JC-1 MitoMP Assay Kit	50 tests	G272-10
Quantification for Intracellular Metabolism		
ATD Assau Kit Luminasaanaa	50 tests	A550-10
ATP Assay Kit-Luminescence	200 tests	A550-12
ADP/ATP Ratio Assay Kit-Luminescence	100 tests	A552-10
Olympia Argani Mit MOT	50 tests	G264-05
Glucose Assay Kit-WST	200 tests	G264-20
Glutamine Assay Kit-WST	100 tests	G268-10
Glutamate Assay Kit-WST	100 tests	G269-10
α-Ketoglutarate Assay Kit-Fluorometric	100 tests	K261-10
Lastata Association	50 tests	L256-10
Lactate Assay Kit-WST	200 tests	L256-20
NAD/NADH Assay Kit-WST	100 tests	N509-10
NADP/NADPH Assay Kit-WST	100 tests	N510-10
Uptake Assay Kit		
Glucose Uptake Assay Kit-Blue	1 set	UP01-10
Glucose Uptake Assay Kit-Green	1 set	UP02-10
Glucose Uptake Assay Kit-Red	1 set	UP03-10
	20 tests	UP04-10
Amino Acid Uptake Assay	100 tests	UP04-12
Out the Helder Assess ICh	20 tests	UP05-10
Cystine Uptake Assay Kit	100 tests	UP05-12
Fatty Acid Uptake Assay Kit	100 tests	UP07-10

Simple Procedure for First Time User

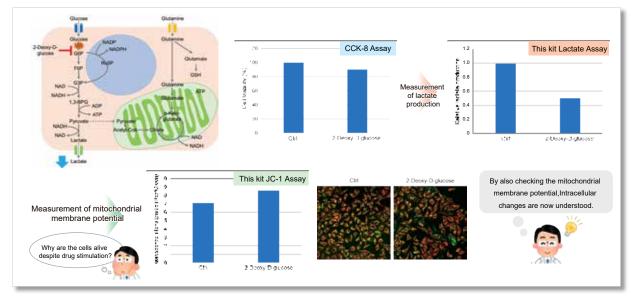
For a first-time user, the kit includes the reagents and components necessary for measuring samples. You'll soon realize how easy it is to use.

Endocytosis

Intracellular Metabolism

Glycolysis/JC-1 MitoMP Assay Kit

- Two indicators can be measured in one sample (Lactate production and mitochondrial membrane potential)
- Easy-to-understand detailed protocol

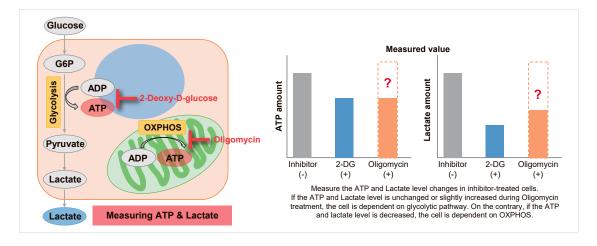

Intracellular metabolic changes caused by any stimulations can be detected by measuring lactate production and mitochondrial membrane potential. In certain instances, cells manage to survive despite sustaining damage to their glycolytic system or mitochondrial function, the principal pathways for energy production. It is understood that this occurs as cells strive to persist and prevent cell death by augmenting glycolysis even when mitochondrial function is compromised, or by activating mitochondrial function when glycolysis is impaired.

Experimental Example:

Intracellular metabolic changes in HeLa cells treated with the glycolytic inhibitor 2-Deoxy-D-glucose

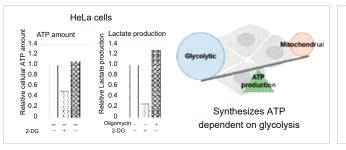
When we evaluated cell viability in 2-DG-treated HeLa cells using the CCK-8* assay, we observed minimal changes in viability. However, given the observed decrease in lactate production, it prompted us to question how cell viability was maintained in spite of glycolytic system inhibition. To answer this, we examined the mitochondrial membrane potential using the JC-1 Assay. The results from this investigation suggest that HeLa cells preserve their survival by boosting mitochondrial function when the glycolytic system is inhibited by 2-DG.

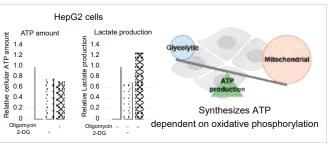
* Cell Counting Kit-8 (product code: CK04) is not included in this kit.



Description	Unit	Code
Glycolysis/JC-1 MitoMP Assay Kit	50 tests	G272-10

• Easy test via plate reader, no need for expensive equipment


- All reagent acquired is included, ready to use kit
- Easy-to-understand detailed protocol

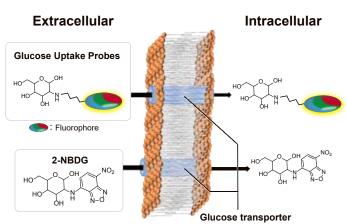

Combining methods (1) and (2) can be used to measure the metabolic pathway dependency of cells. Cells are treated with oligomycin or 2-DG to inhibit OXPHOS or ATP synthesis in the glycolytic pathway, and the amounts of ATP and lactate production are measured, respectively. Changes in the amount of ATP can be used to determine the efficiency of energy production, and changes in the amount of lactate produced can be used to determine changes in glycolytic capacity and evaluate whether cells are dependent on glycolysis or OXPHOS.

Experimental Example:

Comparison of metabolic pathway dependence in different cell line

Description	Unit	Code
Glycolysis/OXPHOS Assay Kit	50 tests	G270-10

Oxidative Stress


Mitochondria

Intracellular Metabolism

Glucose Uptake Assay Kit

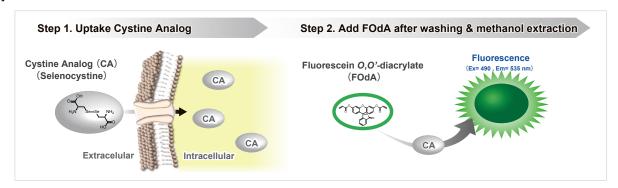
- Highly sensitive and simple measurement of glucose uptake capacity
- Applicable for microscopy & FCM
- Reduces dye leakage after staining

Glucose Uptake Probe allowing highly sensitive detection of cellular glucose uptake by fluorescence imaging or flow cytometry. The WI Solution in this kit can enhance cellular retention to provide more reliable experimental data. Also, compare with the existing method (2-NBDG), the measurement time can be significantly reduced.

Comparison with Existing Method

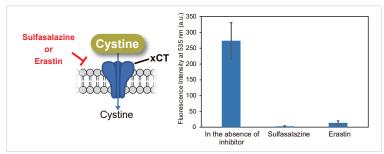
The comparison of the Glucose Uptake Probe Series and the existing method(2-NBDG) is as below.

product name	Fluorescence microscope	Plate reader detection	FCM detection	Retention ability	Fluorescence characteristics
Glucose Uptake Assay Kit-Blue	0	×	0	1 hour *	λ _{ex} :386 nm λ _{em} :474 nm
Glucose Uptake Assay Kit-Green	0	0	0	1 hour *	λ _{ex} :507 nm λ _{em} :518 nm
Glucose Uptake Assay Kit- <mark>Red</mark>	0	0	0	1 hour *	λex:560 nm λem:572 nm
2-NBDG	0	×	0	30 minutes or less *	λex:465 nm λem:540 nm


*Result of A549 cells, the retention time for other cell lines may be different.

Description	Unit	Code
Glucose Uptake Assay Kit-Blue	1 set	UP01-10
Glucose Uptake Assay Kit-Green	1 set	UP02-10
Glucose Uptake Assay Kit-Red	1 set	UP03-10

Cystine Uptake Assay Kit


- Easier way to cystine uptake assay
- Applied for plate assay

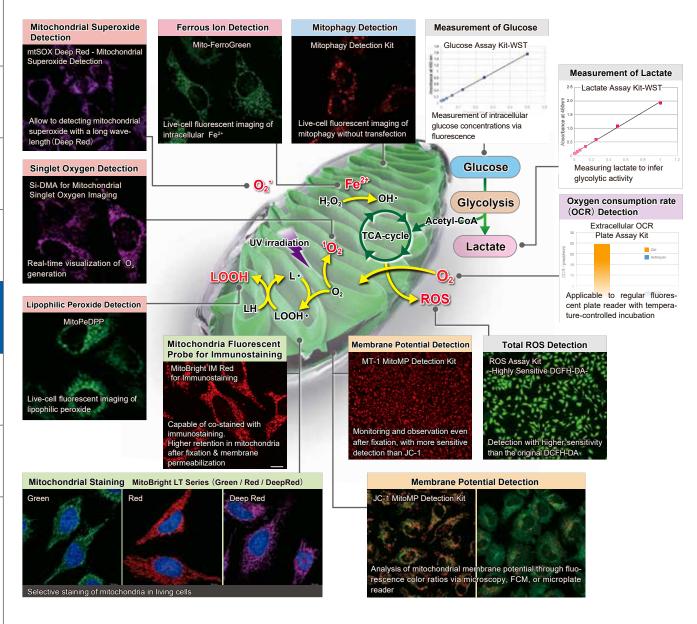
The Cystine Analog (CA) in this kit can be taken up into cells via xCT, and the incorporated CA can be specifically detected using the Fluorescent Probe and Reducing Agent. Thus, the xCT activity can be measured easily.[Patent applied]

Evaluation of xCT inhibitor Sulfasalazine or Erastin

Using this kit, we measured the inhibitory effect of sulfasalazine and erastin on cystine uptake by HeLa cells. The fluorescence intensity of the sulfasalazine and elastin groups decreased significantly, indicating that both reagents inhibit cystine uptake.

Experiment Condiitons

Cell Line: HeLa cells

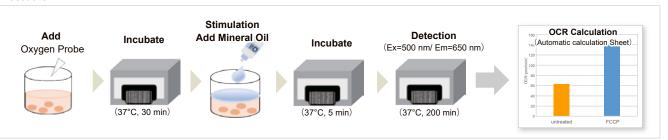

Pretreatment: DMEM (cystine-free, serum-free), 37°C, 5 min Uptake conditions: 0.5 mmol/l sulfasalazine or 2 µmol/l erastin / Cystine Analog / DMEM (cystine-free, serum-free), 37°C, 30 min

Instrument: Fluorescent Plate Reader Filter: Ex=485 nm, Em=535 nm

Description	Unit	Code
Custing Untaka Assau Vit	20 tests	UP05-10
Cystine Uptake Assay Kit	100 tests	UP05-12

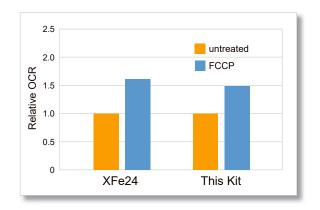
Mitochondrial Research

Mitochondrial Research


Extracellular OCR Plate Assay Kit

- Applicable to regular fluorescent plate reader with temperature-controlled incubation
- No need for an expensive instrument, special medium, and plates
- All-in-One Kit with OCR calculation Sheets

Procedure

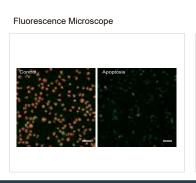


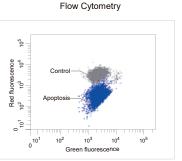
Comparison with Flux Analyzer

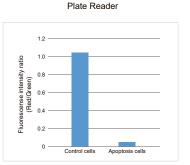
Flux Analyzer (XFe24) and this kit were measured on the same day under the same conditions (cell type, cell number, and FCCP concentration).

As a result, correlated data of oxygen consumption rate changes were obtained for XFe24 and this kit.

Cells: HepG2
Cell Number: 5×10⁴ cells/well
Stimulation: FCCP (Carbonyl cyanide
4-(trifluoromethoxy) phenylhydrazone)
FCCP Concentration: 2 µmol/l

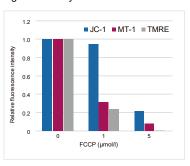

Description	Unit	Code
Extracellular OCR Plate Assay Kit	100 tests	E297-10


Mitochondrial Membrane Potential Detection

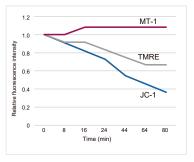

JC-1 MitoMP Detection Kit

JC-1 forms aggregate (in healthy mitochondria) with red fluorescence. As membrane potential decreases, JC-1 becomes monomers, which shows in green fluorescence. The change in ratio of red to green fluorescence is used as a indicator of mitochondrial condition.

Description	Unit	Code
JC-1 MitoMP Detection Kit	1 set	MT09-10

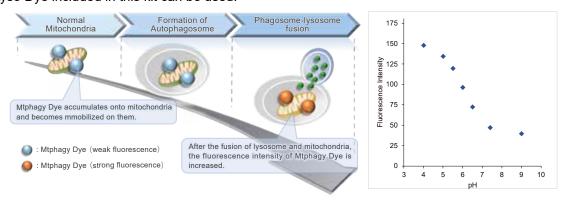

Mitochondrial Membrane Potential Detection

MT-1 MitoMP Detection Kit



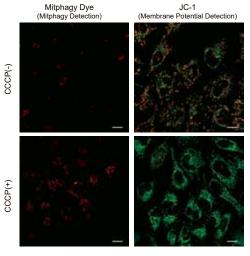
JC-1 dye, TMRE, and TMRM are widely used to monitor MMP, however, these dyes have some limitations, such as low photostability and poor retention after aldehyde fixation. These limitations result in poor reproducibility of experiments. Dojindo's MT-1 MitoMP Detection Kit overcomes these limitations. In addition, the Imaging Buffer included in this kit minimizes background fluorescence and maintains cell vitality while the assay is being performed.

High Sensitivity Detection


Description	Unit	Code
MT-1 MitoMP Detection Kit	1 set	MT13-10

Mitochondrial Research

Mitophagy Detection Kit



This kit is composed of Mtphagy Dye, reagent for detection of mitophagy, and Lyso Dye. Mtphagy Dye accumulates in intact mitochondria, is immobilized on it with chemical bond and exhibits a weak fluorescence from the influence of surrounding condition. When Mitophagy is induced, the damaged mitochondria fuses to lysosome and then Mtphagy Dye emits a high fluorescence. To confirm the fusion of Mtphagy Dye—labeled mitochondria and lysosome, Lyso Dye included in this kit can be used.

The fluorescent intensity of Mtphagy Dye is incresased at pH 4-5.

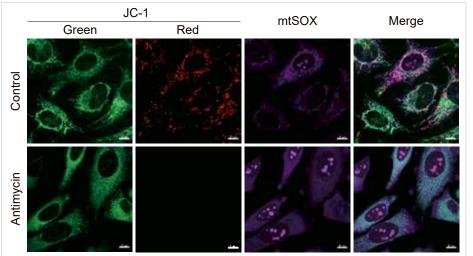
Mitophagy Induction and Mitochondrial Membrane Potential Changes

Mitochondrial condition in the carbonyl cyanide m-chlorophenyl hydrazine (CCCP) treated Parkin-expressing HeLa cells was compared with untreated cells using Mitophagy Detection Kit (MD01, MT02) and JC-1 MitoMP Detection Kit (MT09). Result:

As a result, mitophagy was hardly detected in the CCCP-untreated cells, and mitochondrial membrane potential was maintained normally. On the other hand, in CCCP-treated cells, we observed a decrease in mitochondrial membrane potential (decrease in red fluorescence of JC-1)

and induction of mitophagy (increase in fluorescence of Mtphagy Dye).

Description	Unit	Code
Mitophagy Detection Kit	1 set	MD01-10
Mtphagy Dye	5 μg × 3	MT02-10


Mitochondrial Superoxide Detection

mtSOX Deep Red

Dojindo's mtSOX Deep Red overcomes these limitations. This dye emits deep red fluorescence; its fluorescence does not overlap with emission wavelengths that other red fluorescent markers use. Furthermore, the mtSOX Deep Red is better able to selectively detect superoxide, compared to Company T' product Red. Altogether, mtSOX Deep Red is a powerful tool for researchers with a limited number of cells and can provide an understanding of how mitochondria are altered during different treatments and physiological or pathological states.

Simultaneously Evaluation of Mitochondrial Superoxide and Membrane Potential

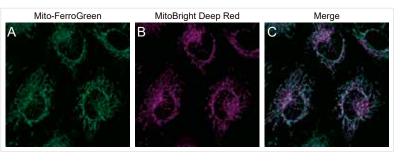
<lmaging Conditions>
(Confocal microscopy)
JC-1: Green Ex = 488, Em = 490-520 nm,
Red: Ex = 561, Em = 560-600 nm
mtSOX: Ex = 633 nm, Em = 640-700 nm
Scale bar: 10 µm

After HeLa cells were washed with HBSS, co-stained with mtSOX Deep Red and mitochondrial membrane potential staining dye (JC-1: code MT09 or MT-1: code MT13), and the generated mitochondrial ROS and membrane potential were observed simultaneously. As a result, the decrease in mitochondrial membrane potential and the generation of mitochondrial ROS are simultaneously observed.

Description	Unit	Code
matCOV Door Ded Mitachendrial Conservide Detection	100 nmol × 1	MT14-10
mtSOX Deep Red - Mitochondrial Superoxide Detection	100 nmol × 3	MT14-12

Senescence

Autophagy


Mitochondrial Superoxide Detection


Mito-FerroGreen

Mito-FerroGreen is a novel fluorescent probe for the detection of ferrous ion (Fe²⁺) in mitochondria where Fe-S clusters and heme proteins are synthesized, and enables live cell fluorescent imaging of intracellular Fe²⁺. Mito-FerroGreen has no no chelating ability. Mito-FerroGreen and Fe²⁺ react irreversibly, which is different from the detection principle of calcium-iron probes such as Fluo-3.

Double staining with mitochondrial staining probe

HeLa cells incubated with Mito-FerroGreen and MitoBright Deep Red, treated with ammonium iron(II) sulfate, were observed by fluorescence microscopy.

※ Bpy: 2,2' -Bipyridyl

Double staining with mitocondrial staining probe Mito-FerroGreen (5 µmol/l) Ex/Em = 488 nm/ 500-550 nm

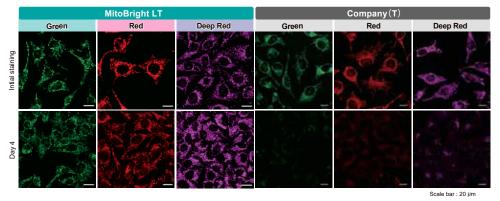
MitoBright Deep Red (200 nmol/l) Ex/Em = 640 nm/ 656-700 nm

A Mito-FerroGreen

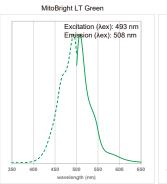
B MitoBright Deep Red

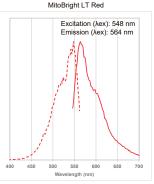
C Merge

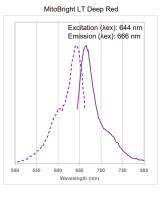
Iron Detection Dyes


	Mito-FerroGreen (M489)	FerroOrange (F374)
Localization	Mitochondria	Intracellular
Fluorescent Property	λex 505 nm, λem 535 nm	λex 543 nm, λem 580 nm
Instrument (filter)	Fluorescence microscope (FITC, GFP)	Fluorescence microscope, plate reader (Cy3)
Sample	Live Cell	Live cell
The number of assays	1 set (50 µg x 2) 10 assays at 35 mm dish (final concentration 5 µmol/l)	1 tube (24 μg) 17 assays at 35 mm dish (final concentration 1 μmol/l)

	Description	Unit	Code
Mito-FerroGreen		1 set (50 μ g $ imes$ 2)	M489-10
FerroOrange	1 tube	F374-10	
	3 tube	F374-12	


MitoBright LT dyes are designed to exhibit mitochondria retention for long-term visualization. In addition, the MitoBright LT dyes show stronger fluorescence signals compared with other commercially available dyes that contain the chloromethyl moiety. The MitoBright LT dyes offer three different color options (Green, Red and Deep Red), and are provided as a ready-to-use DMSO solution. A working solution can easily be prepared in a single dilution step with growth medium or HBSS.


Stained in serum-contained media

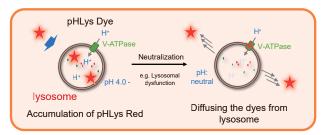

HeLa cells were stained with MitoBright LTs or an existing reagent and observed after 4 days. MitoBright LT remained unchanged and observable even after 7 days, while the existing reagent's intensity decreased.

Fluorescence Properties

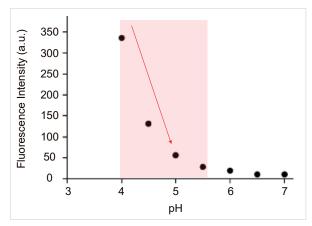
Description	Unit	Code
MitoBright LT Green	400 µl	MT10-12
MitoBright LT Red	400 µl	MT11-12
MitoBright LT Deep Red	400 µl	MT12-12

Lysosomal Analysis

LysoPrime Green / Deep Red - High Specificity and pH Resistance pHLys Red - Lysosomal Acidic pH Detection

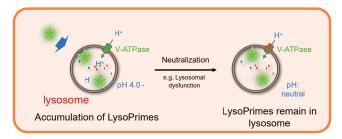


LysoPrime Green

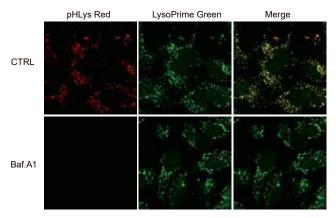


pHLys Red

Lysosomal pH-dependent Fluorescent Probe



pH dependence of pHLys Red

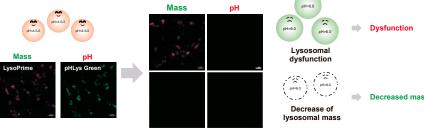


The fluorescence intensity of pHLys Red at each pH was confirmed in vitro, and it was confirmed that the fluorescence intensity changed sensitively within the range of lysosomal pH (pH 4.0-5.5).

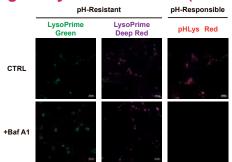
Lysosomal pH-independent Fluorescent Probe

Resistance to pH changes in lysosomes

LysoPrime Green and existing dyes accumulate in acidic lysosomes, but when treated with Bafilomycin A1, a lysosomal acidity inhibitor, the existing dyes leave the lysosomes when the lysosomes are changed from acidic to neutral, resulting in a significant decrease in the fluorescence signal. On the other hand, LysoPrime Green is easily retained in the lysosome, so the decrease in the fluorescence signal is suppressed and the observation results are clearer than those of existing reagents.

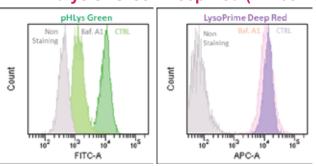

Lysosomal Acidic pH Detection Kit

Proliferation Cytotoxicity


Senescence

Autophagy

The kit includes lysosome staining dyes, pHLys Red/Green (pH dependent), and LysoPrime Green/Deep Red (pH-independent). The pHLvs and LvsoPrime dves accumulate in the intact lvsosomes. The fluorescence intensity of pHLys dyes are enhanced as the acidity increases, and weak fluorescence is observed when lysosomes are neutralized due to the lysosomal dysfunction. On the other hand, LysoPrime dyes gives stable emissions even lysosomes are neutralized. Lysosomal pH and lysosomal mass can be measured by combining these pHLys and LvsoPrime dves.



Imaging Analysis: Green/Red (#L266-10)

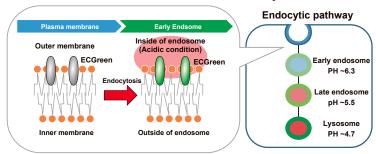
<Experimental Conditions> LysoPrime Green: Ex = 488 nm, Em = 490 - 550 nm pHLys Red: Ex = 561 nm, Em = 560 - 620 nm

FCM Analysis: Green/Deep Red (#L268-10)

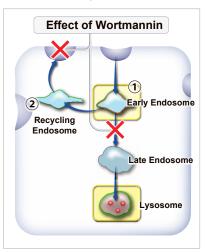
<Experimental Conditions> pHLys Green: FITC Filter (Ex = 488 nm, Em = 515 - 545 nm) LysoPrime Deep Red: APC Filter (Ex = 640 nm, Em = 650 - 670 nm)

Description	Unit	Code
Lysosomal Acidic pH Detection Kit – Green/Red *1	1 set	L266-10
Lysosomal Acidic pH Detection Kit – Green/Deep Red *2	1 set	L268-10
LycoPrime Creen High Specificity and pH Posictones	10 μ l $ imes$ 1	L261-10
LysoPrime Green – High Specificity and pH Resistance	10 μ l $ imes$ 3	L261-12
Lyce Prime Deep Bod. High Specificity and pH Begintanes	1 tube	L264-10
LysoPrime Deep Red - High Specificity and pH Resistance	3 tube	L264-12
pHLys Red - Lysosomal Acidic pH Detection	1 tube	L265-10
pnLys Red - Lysosomai Acidic pn Detection	3 tube	L265-12

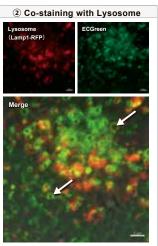
^{*1} Green/Red: combination of LysoPrime Green and pHLys Red, *2 Green/Deep Red: combination of pHLys Green and LysoPrime Deep Red


Endocytosis

ECGreen-Endocytosis Detection

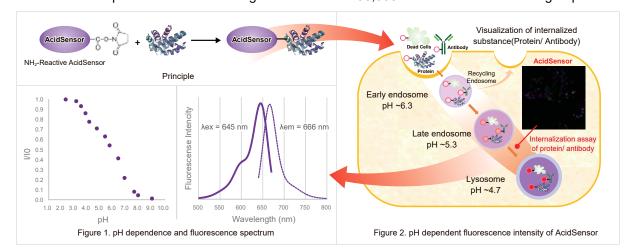

ECGreen-Endocytosis Detection is a pH dependent fluorescence dye that localizes to vesicle membrane. The visualization of endocytosis using the ECGreen is a more direct method than fluorescent analogs and allows visualization endocytosis from the stage of early endosomes.

The detection mechanism of endocytosis

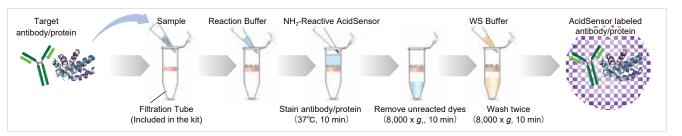


Clear visualization of intracellular vesicular trafficking

It has been known that Wortmannin inhibits the recycling of endosomes or transition to lysosomes and causes enlargement of endosomes. To evaluate these changes caused by Wortmannin, early endosomes were co-stained by ECGreen and Rab5-RFP (marker protein of early endosomes), and lysosomes were co-stained by ECGreen and lysosome staining reagent. In adding Wortmannin, ECGreen was colocalized with enlarged endosomes (Rab5-RFP). On the other hand, ECGreen wasn't colocalized with lysosomes.



Description	Unit	Code
ECGreen-Endocytosis Detection	40 µl	E296-10


AcidSensor Labeling Kit Endocytic Internalization Assay

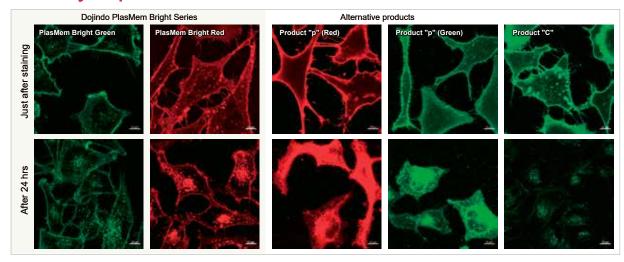
This kit is an all-in-one kit that allows visualization of the endocytosis uptake of a target substance. The NH₂-Reactive AcidSensor (fluorescent probe) included in the kit has an intramolecular active ester group that forms a stable covalent bond when mixed with an amino group-containing target substance (protein). The AcidSensor label can be excited at 633 nm, allowing for multiple staining with green or red fluorescence (Figure 1). The AcidSensor label shows little fluorescence in neutral conditions and fluoresces when acidified in the cells where it is taken up by endocytosis (Figure 2).*Notice:

- Unlike the endocytosis detection dye: ECGreen (code: E296), this kit stains target substances that enter the cell.
- This kit can label samples with molecular weights of more than 50,000 and with reactive amino groups.

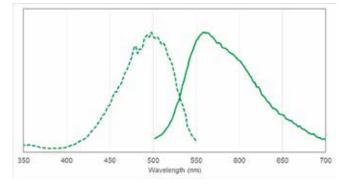
This kit includes a filtration tube necessary to remove the unreacted dye, and allows you to perform everything from labeling to purification operations.* In addition, even first-time users can easily label AcidSensor by conducting experiments according to the instruction manual. * Protein/Antibody is not included.

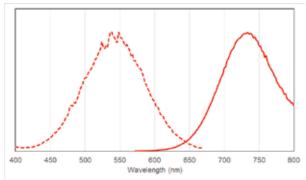
Description	Unit	Code
AcidSensor Labeling Kit – Endocytic Internalization Assay	3 samples	A558-10

Oxidative Stress


Cell Membrane Staining

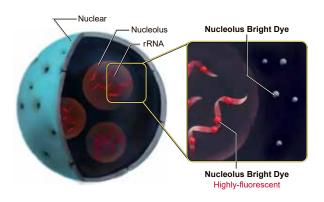
PlasMem Bright Green / Red




PlasMem Bright dyes overcome these limitations. PlasMem Bright dyes are designed to stain PMs for over a day. Furthermore, the PlasMem Bright dyes are more water-soluble compared with other commercially available dyes and can be diluted with culture medium. The PlasMem Bright dyes offer two different color options (green and red) and are provided as ready-to-use DMSO solutions. A working solution can be prepared easily via a single dilution step using growth medium or HBSS.

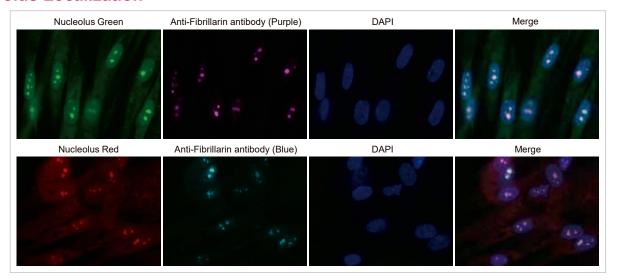
High retentivity on plasma membrane

Excitation and emission spectra of PlasMem Bright dyes



Description	Unit	Code
PlasMem Bright Green	100 μΙ	P504-10
PlasMem Bright Red	100 µl	P505-10

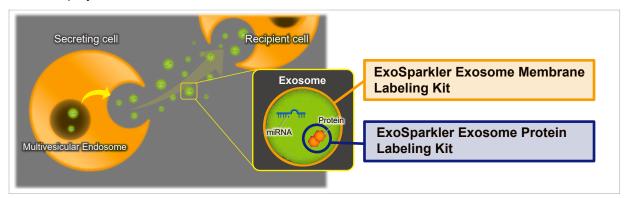
Proliferation Cytotoxicity


Nucleolus Bright Green / Red

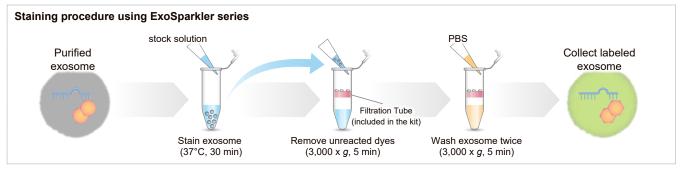
Nucleolus Bright reacts to RNAs present besides nucleolus, but it shows strong fluorescence in nucleolus, which is the site of rRNA production. We recommend to co-stain with DAPI in order to image nucleolus clearly. For co-staining protocol, please refer to the Q&A tab.

	Maximum Excitation Wavelength	Maximum Emission Wavelength	Fluorescence of MeOH fixed cells	Fluorescence of PFA fixed cells
Nucleolus Bright Green	513 nm	538 nm	0	0
Nucleolus Bright Red	537 nm	605 nm	0	0

Nucleolus Localization


Description	Unit	Code
Nucleolus Bright Green	60 nmol	N511-10
Nucleolus Bright Red	60 nmol	N512-10

Exosome Staining


Exosome Labeling Kits

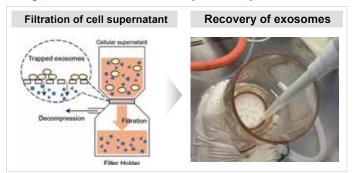
The ExoSparkler series can be used to stain purified exosomal membrane or protein and allows imaging of labeled exosomes taken up by cells.

Labelling Procedure

ExoSparkler series contains filtration tubes available for the removal of dyes unreacted after fluorescence labeling, as well as an optimized protocol for labeling exosomes. Our ExoSparkler series makes it possible to prepare fluorescence labeling of exosomes using the simple procedure.

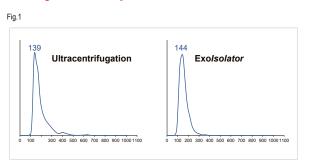
Description	Unit	Code
ExoSparkler Exosome Membrane Labeling Kit-Green	5 samples	EX01-10
ExoSparkler Exosome Membrane Labeling Kit-Red	5 samples	EX02-10
ExoSparkler Exosome Membrane Labeling Kit-Deep Red	5 samples	EX03-10
Exosparkler Exosome Protein Labeling Dye-Green	5 samples	EX04-10
Exosparkler Exosome Protein Labeling Dye-Red	5 samples	EX05-10
Exosparkler Exosome Protein Labeling Dye-Deep Red	5 samples	EX06-10

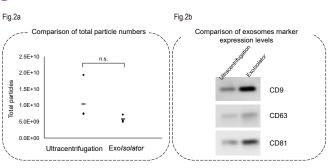
Exolsolator Exosome Isolation Kit


Senescence

Proliferation Cytotoxicity

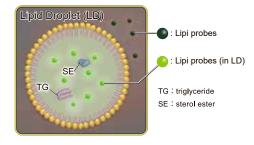
Exo*lsolator* Exosome Isolation Kit can collect exosomes from cell supernatants with a recovery rate equivalent to the ultracentrifugation(UC) method. Science Exo*lsolator* Exosome Isolation Kit requires only the filtration


procedure, unlike the UC, exosomes are obtained quickly without any complicated operations.


Easy to Use no Technique Required

Exolsolator Exosome Isolation Kit includes Filter Holder and Isolation Filter can collect exosomes from cell supernatant by adding PBS to the filter surface after filtration. The exosomes recovery rate is high and easy to use, no technique is required during the whole process. [Patent applied]

Recovery Rate Equivalent to Ultracentrifugation


Ultracentrifugation is the most commonly used method to isolate exosomes. We isolated the exosomes from the supernatant of HEK293S using both of ultracentrifugation method and the Exo*lsolator* method. The particle size distribution (Fig. 1), the number of particles (Fig. 2(a)) and the expression level of exosome markers (Fig. 2(b)) of the isolated exosomes were tested and compared. The results showed that the Exo*lsolator* recovered exosomes with the same particle size distribution and the number of particles as the ultracentrifugation method, and the amount of exosome marker expression per protein was higher, indicating that Exo*lsolator* recovered exosomes with higher purity than the ultracentrifugation method.

Description	Unit	Code
Exolsolator Exosome Isolation Kit	3 tests	EX10-10
Exolsolator Isolation Filter	10 pieces	EX11-10

Lipid Droplet Staining

Lipi-Blue / Green / Red / Deep Red

Lipi probes are small molecules that emit strong fluorescence in a hydrophobic environment such as LDs, which can be observed without any washing steps after staining with Lipi probes.

A medium that contained oleic acid (200 μ mol/I) was added and incubated overnight. Then, the supernatant was removed and the cells were washed with PBS. Each Lipi product series (1 μ mol/I) was added and the cells were incubated for 15 minutes.

Lipi-Blue: Ex. 405 nm / Em. 450 – 500 nm, Lipi-Green: Ex. 488 nm / Em. 500 – 550 nm, Lipi-Red: Ex. 561 nm / Em. 565 – 650 nm, Lipi-Deep Red: Ex.640 nm / Em.650-700 nm

Lipi-Blue	Lipi-Green	Lipi-Red	Lipi-Deep Red
			. J
		W .40 Q	
* XX			
A CONTRACTOR OF THE PARTY OF TH	· · · · · · · · · · · · · · · · · · ·		
	11 de 11	es - 100	S / 149
6	~ A -	Marie Carlos Se	All Inc.

Comparison of Reagents

		Dojindo			Other Products	3
	Lipi-Blue	Lipi-Green	Lipi-Red	Oil Red O	Nile Red	Reagent B
Live Cells	✓	1	✓		✓	✓
Fixed Cells	✓	✓	1	✓	✓	1
Selectivity towards Lipid Droplet (Level of Background)	✓	✓	1			
General Filter Accommondation*1	✓	✓	✓* ²	n.d.	*3	1
Retention in Live Cells	✓	✓		n.d.		

^{*1} Please refer to our website for the co-staining filter.

 $^{^{*3}}$ Leaks in GFP filter (500 \sim 540 nm)

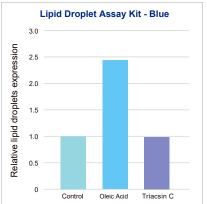
	Description	Unit	Code
Lipi-Blue		10 nmol $ imes$ 1	LD01-10
Lipi-Green		10 nmol × 1	LD02-10
Lipi-Red		100 nmol × 1	LD03-10
Lipi-Deep Red		10 nmol × 1	LD04-10

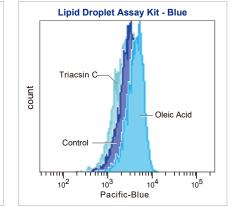
² When co-staining with a green fluorescent dye, a green fluorescent emission filter less than 550 nm is recommended.

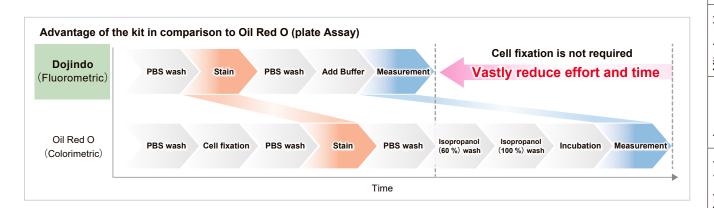
Lipid Droplet Assay Kit - Blue / Deep Red

Proliferation Cytotoxicity

Senescence


Autophagy


Oxidative Stress


Metabolism

Mitochondria

The Lipid Droplet Assay Kit simplifies the quantification of fat droplets with provided protocols and buffers. It works

for live cells, and its fluorescent dye is suitable for both live and fixed cells. Compared to colorimetric reagents, it

reduces measuring time and increases experiment repeatability by avoiding dye deposition in the plate.

Description	Unit	Code
Lipid Droplet Assay Kit-Blue	1 set	LD05-10
Lipid Droplet Assay Kit-Deep Red	1 set	LD06-10

European Headquarters

Dojindo EU GmbH

Leopoldstr. 254, 80807, Munich, Germany

Phone: +49-89-3540-4805 email: info@dojindo.eu.com Web: www.dojindo.com/EUROPE/ Condalab

Inspired by knowledge

Contact us: laura@condalab.com